
CTAM: a tool for Continuous Threat
Analysis and Management
Laurens Sion, Dimitri Van Landuyt, Koen Yskout, Stef Verreydt, Wouter Joosen

VeriDevOps Research Workshop – 26 October 2023

DevOps Lifecycle

2Source: https://about.gitlab.com/stages-devops-lifecycle/

https://about.gitlab.com/stages-devops-lifecycle/

OWASP Top 10 2021

3

OWASP Top 10 2021

4

Insecure Design

A04:2021-Insecure Design is a new category for 2021, with a focus on risks
related to design flaws. If we genuinely want to "move left" as an industry, we
need more threat modeling, secure design patterns and principles, and reference
architectures. An insecure design cannot be fixed by a perfect implementation
as by definition, needed security controls were never created to defend against
specific attacks.

5

Insecure Design

A04:2021-Insecure Design is a new category for 2021, with a focus on risks
related to design flaws. If we genuinely want to "move left" as an industry,
we need more threat modeling, secure design patterns and principles, and
reference architectures. An insecure design cannot be fixed by a perfect
implementation as by definition, needed security controls were never created to
defend against specific attacks.

6

Insecure Design

A04:2021-Insecure Design is a new category for 2021, with a focus on risks
related to design flaws. If we genuinely want to "move left" as an industry,
we need more threat modeling, secure design patterns and principles, and
reference architectures. An insecure design cannot be fixed by a perfect
implementation as by definition, needed security controls were never created to
defend against specific attacks.

7

DevOps Lifecycle

Progress threat mitigation
Which threats addressed?

Evolution security risk
Moving in the right direction?

Impact proposed changes
Do they introduce new threats?

Source: https://about.gitlab.com/stages-devops-lifecycle/

https://about.gitlab.com/stages-devops-lifecycle/

Frequent threat modeling

To find security design flaws
Threat modeling for systematic analysis design

Often manual exercise
Slow and expensive, frequently single-shot effort

Security expertise
Reliance on limited resource

9

Existing threat modeling tools support limited
embedding in development lifecycle

Manual elicitation
ThreatDragon, ThreatSpec, …

Automated elicitation
Pytm, SPARTA, IriusRisk, ThreatAgile, …

Code analysis implementation-level vulnerabilities
Static and dynamic application security testing (SAST/DAST)

Can we leverage threat modeling tool support in a
continuous integration context?

Reduce manual effort
Leverage existing analysis tools

Requires threat analysis engine
Elicit all applicable threats, mitigation status, risk, …

Run analysis in CI/CD pipelines
Enable automated and frequent re-assessment

Automate threat management

Versioning design model
Together with code

Keeping track of threat analysis results
Linked to source code commits

Threat mitigation progress
Track evolution of threats during development

Elicitation engines

Not all tools elicit threats
Manual creation (e.g., ThreatSpec, ThreatDragon)

Elicit mitigated threats for progress monitoring
Existing tools remove mitigated threats (e.g., Pytm)

Richer elicitation enables more analyses
Risk, % mitigated, etc.

Leveraged existing engine
SPARTA threat analysis engine

Threat Analysis

List of threats
+ inherent risk (fully vulnerable)
+ residual risk (considering solutions)

SecurityThreatB

PrivacyThreatM

PrivacyThreatI

PrivacyThreatC

PrivacyThreatE

SecurityThreatF

PrivacyThreatA

SecurityThreatD

PrivacyThreatG

SecurityThreatH

SecurityThreatJ

+ security solutions

15

Continuous Threat Analysis & Management

commit

push

GitLab

trigger
CI job

commit history

Threat
analysis
engine

Server

submit
results

dashboard

consult

15

Developer

Version model and code
Track evolution system design

16

commit

push

GitLab

Developer

Version model and code
Track evolution system design

Every push triggers CI job
Perform automated assessment

17

GitLab

trigger
CI job

commit history

Threat
analysis
engine

Server

submit
results

Version model and code
Track evolution system design

Every push triggers CI job
Perform automated assessment

Collect results
Submitted to server, linked to commit

18

GitLab

trigger
CI job

commit history

Threat
analysis
engine

Server

submit
results

Version model and code
Track evolution system design

Every push triggers CI job
Perform automated assessment

Collect results
Submitted to server, linked to commit

Results dashboard
Present analysis results to user

19

Server

dashboard

consultDeveloper

Risk Evolution patterns

20

ksiRtnerehnIksiRlaudiseR (top line)

(bottom line) esaercnIelbatSesaerceD

Increase i ii iii

Remove security solutions * Remove security solutions Add insecure functionality

Stable iv v vi

Remove secure functionality No security-relevant changes Add secure functionality

Decrease vii viii ix

Remove insecure functionality Add security solutions Add security solutions *

* Solutions that introduce additional risk with regard to, for example, cryptographic key material.

0

5

10

15

20

25

30

35

C 01 C 02 C 03 C 04 C 05 C 06 C 07 C 08

Risk evolution

Inherent risk Residual risk

+ Insecure
functionality

+ Secure
functionality

- Secure
functionality

- Insecure
functionality

+ security
solutions

- security
solutions

21

Addresses threat management concerns

Evolution of security risk
Are measures effective in reducing risk?

Threat mitigation progress
What is the progress in mitigating threats?

Remaining threats to address
What are the most important threats mitigate?

22

Functional validation

23

Document Processing and Delivery Serv ice

E1 Print
serv ice

P1
Scheduler DS1 archiv e

E2 Banking

E3 Email
Prov ider

P2
Deliv ery

DF11

DF12

DF13

DF14

DF1

DF2DF3

DF4

DF5
(a) DFD f or versions C0–C2

Document Processing and Delivery Serv ice

E1 Print
serv ice

P1
Scheduler DS1 archiv e DS2 PDS Docs

E2 Banking E4 PDS User

E3 Email
Prov ider

P2
Deliv ery

P3
PDS

DS3 User
data

DF11

DF12

DF13

DF14

DF1

DF2DF3

DF4

DF5

DF15,DF16

DF17,DF18

DF21,
DF22DF23

DF19, DF24,
DF25

DF20

DF9,DF10

DF6,DF7,DF8

(b) DFD f or versions C3–C5

Functional validation

24

vi–iii viii

iii

viii

vii

C0 C1 C2 C3 C4 C5
0

10

20

30

40

50

60 inherent risk
residual risk

Evaluation on contact tracing application

Create Corona-Warn-App models
Historic versions during development project

Different server components
Application, testresults, verification portal, etc.

25

Version history

12: 2020-10-28 s v1.6.0, ts v1.1.1, vi v1.1.0, vp v1.3.1, vs v1.3.2
11: 2020-09-22 s v1.4.0, ts v1.1.0, vi v1.1.0, vp v1.3.1, vs v1.3.2
10: 2020-08-19 s v1.3.0, ts v1.1.0, vi v1.1.0, vp v1.3.0, vs v1.3.1
9: 2020-07-16 s v1.1.0, ts v1.1.0, vi v1.1.0, vp v1.1.0, vs v1.1.0
8: 2020-06-12 s v1.0.1, ts v1.0.0, vi v1.0.0, vp v1.0.0, vs v1.0.0
7: 2020-06-08 s v1.0.1, ts v0.6.0, vi v0.6.0, vp v0.6.0, vs v0.6.0
6: 2020-06-05 s v0.5.10, ts v0.5.0, vi v0.5.0, vp v0.3.2, vs v0.5.3
5: 2020-05-31 s v0.5.2, ts v0.3.2, vi v0.3-alpha, vp v0.3.1-alpha, vs v0.5.2
4: 2020-05-28 s v0.5.1, ts v0.3.1, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha
3: 2020-05-27 s v0.5.0, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha
2: 2020-05-22 s v0.4.0, vs v0.3.1-alpha
1: 2020-05-14 s v0.3

26

1 2 3 4 5 6 7 8 9 10 11 120

10

20

30

40

50

60

70

80

processes
data stores
dataflows

external entities
trustboundaries

27

28

vi–iii

iii
iii

v
vi–iii

iii vii iii
iii

v iii

1 2 3 4 5 6 7 8 9 10 11 120

200

400

600

800

1,000

1,200

1,400 inherent risk
residual risk

Discussion

Input model accuracy
Correspondence between model and code

Analysis activities
Types of analysis

Security metrics
What to measure for assessing security

Input model accuracy

Require model representation
Need model to analyze, avoid drift between model and code

Source code annotations
Embed model in code (e.g., threatspec)

Text-based model
Python, YML, … (e.g., pytm, threagile)

30

Input model accuracy

Require model representation
Need model to analyze, avoid drift between model and code

Conformance checking
Verify model corresponds to code

Automated reconstruction
Automatically extract model

31

Analysis activities

Threat management progress
Progress in threat mitigation?

Impact proposed changes
Security impact of feature branches?

Effectiveness of specific solutions
Do security solutions have the intended effect?

32

Security metrics

Current metrics
Threat count, inherent risk, residual risk, …

Assess new metrics
Leverage historical analysis results

33

Conclusion

Step towards tighter integration threat modeling and code
Model together with code

Model from code
Automatic extraction

Threat modeling as a continuous concern
Continuous quality monitoring

34

35

	Ctam: a tool for Continuous Threat Analysis and Management
	DevOps Lifecycle
	Owasp Top 10 2021
	Owasp Top 10 2021
	Insecure Design
	Insecure Design
	Insecure Design
	DevOps Lifecycle
	Frequent threat modeling
	Existing threat modeling tools support limited embedding in development lifecycle
	Can we leverage threat modeling tool support in a continuous integration context?
	Automate threat management
	Elicitation engines
	Threat Analysis
	Continuous Threat Analysis & Management
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Risk Evolution patterns
	Slide Number 21
	Addresses threat management concerns
	Functional validation
	Functional validation
	Evaluation on contact tracing application
	Version history
	Slide Number 27
	Slide Number 28
	Discussion
	Input model accuracy
	Input model accuracy
	Analysis activities
	Security metrics
	Conclusion
	Slide Number 35

