
VeriDevOps

Automated Protection and Prevention to Meet Security

Requirements in DevOps Environments

D4.4 Tools for prevention at design level - final version

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 957212. This document reflects only the author's view and the European Commission

is not responsible for any use that may be made of the information it contains.



D4.4 Tools for prevention at design level-final version

Contract number: 957212

Project acronym: VeriDevOps

Project title: Automated Protection and Prevention to Meet Security Requirements in DevOps

Environments

Delivery Date: 30.3.2023

Coordinator: ABO

Partners contributed: MDU, MI, SOFT

Release Date: 30.3.2023

Version: 03

Abstract: This deliverable is an updated version of D4.1 and discusses the final set of

methods and tools for creating secure-by-design specifications in the VeriDevOps

project. These specifications will be created using formal and semi-formal languages

and different security properties stemming from security requirements will be

verified. The tools discussed in this deliverable use as input the formal security

requirements specification described in deliverable D2.1 and will provide input to

the technologies for test generation discussed in Deliverable D4.5.

Status: • PU (Public)

VeriDevOps Project nr: 957212 1



D4.4 Tools for prevention at design level-final version

Revision History

VERSION DATE DESCRIPTION AUTHOR

04 29/03/2023 Review comments addressed ABO

03 20/03/2023 Version Released for internal review ABO

02 01/03/2023 Partner contributions updated VeriDevOps consortium

01 10/11/2022 Initial version created from D4.1 ABO

 Executive Abstract
This deliverable overviews the final list of methods and tools for creating secure-by-design

specifications in the VeriDevOps project. These specifications will be created using formal and

semi-formal languages and different security properties stemming from security requirements will be

verified. The tools discussed in this deliverable use as input the formal security requirements

specification described in deliverable D2.1 and will provide input to the technologies for test

generation discussed in Deliverables D4.2 and D4.5.

The initial version of this document, namely Deliverable D4.1, was released on 30.06.2021. The current

version is an update of the previous one, by adding new methods and tools, updating the description

of the previous ones. For each presented tool we also discuss the perceived benefits and drawbacks of

applying the tool in the project. The hypotheses on the perceived benefits of applying the tools and the

drawbacks of not applying any of the chosen tools in the project will be validated in the later stages of

the project by evaluating the tools on the two use cases of VeriDevOps.

VeriDevOps Project nr: 957212 2



D4.4 Tools for prevention at design level-final version

Table of Contents

Revision History 2

 Executive Abstract 2

Table of Contents 3

1. Introduction 5

2. UPPAAL model-checking tool suite 7

2.1. General description 7
2.1.1. UPPAAL timed automata 7

2.1.2. Tool features 8

2.1.3. Relation to VeriDevOps and use cases 15

2.1.4. How to get it, install it, licensing 15

2.2. New compared to D4.1 16
3. CompleteTest - Model Generation and Vulnerability Detection using Model Checking 16

3.1. General description 16
3.2. Relation to VeriDevOps and CaseStudies 19

3.3. Detailed overview for relevant usage scenarios 19
3.4. How to get it, install it, licensing 20
3.5. New compared to D4.1 20

4. PyLC [new] 21

4.1. General description 21
4.2. Relation to VeriDevOps and CaseStudies 25

4.3. Detailed overview for relevant usage scenarios 27

5. GW2UPPAAL [new] 28

5.1. General description (purpose, features, interfaces) 28

5.2. Relation to VeriDevOps and CaseStudies 30

5.3. Detailed overview for relevant usage scenarios 30

5.4. How to get it, install it, licensing 31

6. Modelio 32

6.1. General description 32
6.2. Relation to VeriDevOps and CaseStudies 34
6.3. Detailed overview for relevant usage scenarios 35
6.4. How to get it, install it, licensing 36

6.4.1. Modelio Open Source 36

6.4.2. Modelio Commercial 37

VeriDevOps Project nr: 957212 3



D4.4 Tools for prevention at design level-final version

6.5. New compared to D4.1 37

7. Conclusions 37

References 38

VeriDevOps Project nr: 957212 4



D4.4 Tools for prevention at design level-final version

1. Introduction

In the context of VeriDevOps, security specifications play a central role in generating different artifacts

needed later on for prevention at development in WP4. The first deliverable of this WP, namely D4.1

[1], listed the initial methods and tools for creating system specifications that satisfy the security

properties imposed by security requirements. This deliverable, D4.4, complements deliverable D4.1

with additional technologies that have been developed and applied in the context of the industrial use

cases.

Figure 1 shows the list of tools used for prevention at design level and how they rely on the security

requirements produced in WP2. The tools are color-coded based on their availability: in green tools

already introduced in D4.1 and are still in use, in red tools that have been introduced in D4.1 and

discontinued, and in blue the tools that are new in this deliverable. These tools use formal or

semi-formal semantics to specify the expected behavior of the system under test and to verify that the

specification satisfies the security requirements. The input for these tools is provided in the form of

formalized security requirements developed in WP2. These formalized security requirements are

created from textual-based requirements using the methods and tools discussed in detail in deliverable

D2.5 Specification Verification Tool Set - initial version (submitted May 2022). In this project, we focus

on three formalisms to represent formalized security requirements: Timed Computational Tree Logic

(TCTL), Seamless Object Oriented Requirements (SOOR) and, respectively, Organization-based access

control (OrBac) rules. These requirements are used to enforce the specifications of the system which

are later on used in this work package 4 for security test generation and execution.

We present an extension to the model-based analysis and testing approach using UPPAAL. Specifically,

a new tool called GW2UPPAAL has been developed to automate the modeling step which significantly

reduces the time required for verifying the created models and their security requirements. The results

indicate that the use of GW2UPPAAL offers significant benefits in terms of time efficiency and model

verification for security requirements. Secondly, we have extended our CompleteTest approach for

security test generation and program analysis. Specifically, we focus on addressing potential

vulnerabilities in Function Block Diagram (FBD) programs. We propose a method for addressing

potential security requirements at the code level, such as input validation, prevention of out-of-bound

data, and prevention of false negatives and false positives. The goal is to ensure that FBD programs do

not contain vulnerabilities that could be exploited by attackers or intruders. Thirdly, The Modelio tool

has been updated to use the latest version of Java.

VeriDevOps Project nr: 957212 5



D4.4 Tools for prevention at design level-final version

Figure 1. General overview of the usage of the tools used for prevention at design level.

We propose a new framework, called PyLC, that is capable of transforming PLC programs into Python

code and generating tests that can effectively validate the transformed code. The results indicate that

the framework helps in improving the testing and validation of safety-critical industrial PLC programs.

Further, we present a new approach for automated analysis of a GraphWalker (GW) model by

transforming it into a UPPAAL model and generating queries that are verified. The results of the

preliminary evaluation demonstrate that it takes less time to create a model in GW and transform it

into a UPPAAL model than creating a model directly in the UPPAAL GUI tool. Lastly, we point out that

the SecureIF tool, proposed in Deliverable D4.1, has been discontinued due to its unsuitability for the

case study artifacts available in this project. The tool can generate a secure specification of a system by

combining security requirements formalized as Organisation-based access control (OrBac) rules with a

behavioral specification of the system extracted from functional requirements in the form of an

Extended Finite State Machine (EFSM). The tool will not be further described in this deliverable;

however, one can find more details about it in Deliverable D4.1.

VeriDevOps Project nr: 957212 6



D4.4 Tools for prevention at design level-final version

In the next sections, we overview in more detail the relevant features for creating secure-by-design

specifications for each of the tools mentioned above as well as the benefits of using them within our

approach and the dangers or pitfalls of not using them. We discuss the planned use in the context of

the VeriDevOps use cases and we provide details on the licensing and how the tools can be employed

in design. For each presented tool we also discuss the perceived benefits and drawbacks of applying

the tool in the project. The hypotheses on the perceived benefits of these tools will be validated in the

later stages of the project by evaluating the tools on the ABB and FAGOR use cases. The results of the

evaluation will be presented in the deliverables of WP5.

2. UPPAAL model-checking tool suite

2.1. General description

The UPPAAL model-checking tool suite is an integrated environment for modeling, validation, and

verification of real-time systems [2]. It uses a network of extended Timed Automata, called UPPAAL

Timed Automata, to specify the behavior of the system. Although UPPAAL is not a contribution of this

project, we decided to present it here since it is used for verification by the CompleteTest tool (as

shown in Figure 1) and it can be potentially used by other tools (e.g., GW2UPPAAL and CompleteTest).

2.1.1. UPPAAL timed automata

A timed automaton (TA) is essentially a finite automaton (that is, a graph containing a finite set of

nodes called locations and a finite set of labeled edges) extended with real-valued variables [3]. Such

an automaton may be considered as an abstract model of a timed system. The variables model the

logical clocks in the system, are initialized with zero when the system is started, and then incremented

synchronously with the same rate. The behavior of the automaton is restricted by using clock

constraints on edges. A transition represented by an edge can be taken when the clock values satisfy

the guard which labels the edge. The clocks may be reset to zero when a transition is taken.

UPPAAL timed automata (UPPAAL TA) are an extension of timed automata with bounded integer

variables and simple data types (aka, TA with data variables) [4]. The specification of a system using

UPPAAL TA is defined as a closed network of extended timed automata that are called

processes. The processes are combined into a single system by synchronous parallel

composition like in process algebra. The state of an automaton consists of its current location

and assignments to all variables, including clocks. Synchronous communication between

processes is expressed by synchronization variables called channels. A channel ch relates a

VeriDevOps Project nr: 957212 7



D4.4 Tools for prevention at design level-final version

pair of transitions in parallel processes where synchronized edges are labeled with symbols for

input and output actions (denoted ch? and ch!, respectively)

An example of two UPPAAL TA is shown in Figure 2. This example is part of a railway control

system distributed with UPPAAL. In this system, several trains can have access to a bridge but only one

train can cross it at a given time. The trains require a certain time to stop and restart. The trains are

modeled using the template in Figure 2-left. When approaching the bridge a train sends the appr[id]!

notification, where id is the number of the train. After that it has 10 time units to receive a stop[id]?

signal which allows it to stop safely, otherwise it will proceed to crossing the bridge. If a stop[id]? was

received, the train will stop until a go[id]? signal is received and then it will start moving. The gate

automaton (Figure 2-right) specifies the behavior of the gate: whenever a train signals its approach to

the bridge via appr[e]? it is added to a queue. If the bridge is free the first train in the queue is allowed

to pass via the go! signal and the bridge is occupied. When a train has left the bridge it notifies the gate

controller via leave[e] and it is removed from the queue [2].

Figure 2. UPPAAL TA of a train from the train gate example [1]: left - Train TA and right- Gate TA

and it can be used to verify whether given properties of the system, specified in temporal logic, are

violated or not. In the former case, a counter example (aka diagnostic trace) is presented and can be

visualized in the UPPAAL simulator (described in the next section).

2.1.2. Tool features

The UPPAAL tool has a graphical user interface that includes a specification editor, a graphical symbolic

simulator and verification tool.

The UPPAAL editor tab (Figure 3) allows one to specify the processes of the system as templates and to

define shared and local variables, as well as functions. The example in Figure 3 shows the automaton of

VeriDevOps Project nr: 957212 8



D4.4 Tools for prevention at design level-final version

the Train template. In addition, the editor provides syntactic consistency checks of the model to avoid

common modeling mistakes.

Figure 3. UPPAAL editor screenshot

The Simulator tab (Figure 4) in the graphical interface is a validation tool to examine possible dynamic

executions of the system during the modeling stage and to visualize the diagnostic trace of executions

generated by the verifier. The example in Figure 4 shows the train gate system in which the automata in

Figure 2 have been instantiated into six train processes and a gate process.

The simulator provides several panels, as follows:

● currently enabled transitions from which one can manually select the next steps to be

executed

● a trace panel recording which transitions have been executed in the model and the

corresponding states

● a simulation control panel from where the simulation can be run automatically based on

random choice made by the tool according to the enabled transitions

● variables panel listing the global and local variables and their values in each state

● a process panel showing all the processes of the system, the current locations for each process

and the edges taken during a transition

● and a message sequence chart panel showing the order of synchronizations exchanged

between different processes.

VeriDevOps Project nr: 957212 9



D4.4 Tools for prevention at design level-final version

Figure 4: Symbolic simulator tab of UPPAAL

The third tab is a concrete simulator that was originally used in UPPAAL-Tiga [5]. This simulator allows

the user to simulate a system with concrete values of clocks, which is more intuitive than with the

symbolic simulator. This simulator is shown in Figure 5.

VeriDevOps Project nr: 957212 10



D4.4 Tools for prevention at design level-final version

Figure 5. The concrete simulator in UPPAAL

UPPAAL also provides a model checking feature, either via the graphical user interface (Verifier tab)

(Figure 6) or as a command line tool, called verifyTA. The query language used in UPPAAL is a subset of

timed computation tree logic (TCTL) [6]. It consists of state formulae to verify the states and path

formulae to check safety, liveliness, and reachability properties using paths of the model.

In case the verification of a property fails, the verifier can produce a counter-example trace showing

the sequence of states and transitions in the model that violated the property. The trace can be

visualized in the UPPAAL Simulator for further debugging.

VeriDevOps Project nr: 957212 11



D4.4 Tools for prevention at design level-final version

Figure 6. Verifier GUI of UPPAAL

UPPAAL SMC [7] is an extension of the tool UPPAAL, which supports statistical model checking (SMC) of

hybrid automata (HA). Instead of exhaustively exploring the state space of the model, statistical model

checking randomly executes the model with respect to a given property and applies statistical analysis

to estimate the satisfaction of that property. HA in UPPAAL SMC are similar to UPPAAL TA, and extend

the latter with a set of continuous variables whose derivatives are described by ordinary differential

equations (ODE). In UPPAAL SMC, the HA have a stochastic interpretation based on: (i) the probabilistic

choices between multiple enabled transitions, and (ii) the nondeterministic time delays that can be

refined based on probability distributions, either uniform distributions for time-bounded delays or

(user-defined) exponential distributions for unbounded delays.

VeriDevOps Project nr: 957212 12



D4.4 Tools for prevention at design level-final version

Figure 7. UPPAAL SMC train-gate example.

As in UPPAAL, a model in UPPAAL SMC consists of a network of interacting Stochastic Timed Automata

(STA) that communicate via broadcast channels and shared variables to generate Networks of

Stochastic Timed Automata (NSTA). Figure 7 shows the NSTA template for a train and a gate controller.

UPPAAL SMC allows the user to specify an arbitrary (integer) rate for the clocks on any location. In

addition, the automata support branching edges where weights can be added to give a distribution on

discrete transitions. It is important to note that rates and weights may be general expressions that

depend on the states and not just simple constants. We mention here that there are timing constraints

for stopping the trains in which it is not possible to stop trains instantly. The interesting point in SMC is

to define the arrival rates of these trains. The location Safe has no invariant and defines the rate of the

exponential distribution for delays (trains delay according to this distribution).

UPPAAL SMC supports an extension of weighted metric temporal logic for probability estimation,

whose queries are formulated as follows: Pr[bound] (ap), where bound is the simulation time, ap is the

formula that supports two temporal operators: “Eventually” (<>) and “Always” ([]). Such queries

estimate the probability that a property is satisfied within the simulation time bound. Probability

comparison (Pr[bound](ψ1) ≥ Pr[bound](ψ2)) and hypothesis testing (Pr[bound](ψ) ≥ p0) are also

supported. Figure 8 shows the verifier of UPPAAL SMC and Figure 9 shows how it generates the

cumulative probability distribution of an example property using statistical model checking.

VeriDevOps Project nr: 957212 13



D4.4 Tools for prevention at design level-final version

Figure 8. The Verifier of UPPAAL SMC and generating the cumulative probability distribution of an

example property using statistical model checking.

Figure 9. The generation of the cumulative probability distribution of an example property using

statistical model checking.

VeriDevOps Project nr: 957212 14



D4.4 Tools for prevention at design level-final version

The benefits of using UPPAAL SMC over the traditional UPPAAL verification engine include: handling of

dynamical behaviors, discrete probabilities, a stochastic interpretation for timed delays and even

dynamic process creation. By developing, first, a UPPAAL model, one can, with just a few changes,

benefit also from UPPAAL SMC features, and gain statistical and probabilistic measures in addition to

firm results. The potential drawbacks of using UPPAAL and its extensions lie in the slow learning curve

and industrial-grade testing capabilities, as well as in poor scalability.

2.1.3. Relation to VeriDevOps and use cases

UPPAAL and its extensions will be used in this project in conjunction with the CompleteTest and

GW2UPPAAL tools to model the functional specification of the system under test and to verify that the

specifications satisfies the security requirements imposed by the requirements. The verified

specifications and the TCTL queries will be used for security test generation later on in the project as

will be detailed in Deliverable D4.2.

The relation to the use cases will be discussed in Section 3.

2.1.4. How to get it, install it, licensing

The UPPAAL toolkit is free for non-commercial applications for academic institutions that deliver

academic degrees. UPPAAL 4.1 (development snapshot)1 is the current development release of the

academic version, this build includes UPPAAL SMC. To download and install (or upgrade to) the current

version of UPPAAL:

1. Choose the version from the download area.

2. Fill in the license agreement and press the "Accept and Download" button.

3. Download the zip-file containing the installation files.

4. Unzip the downloaded zip-file. This should create a number of files, including:

uppaal.jar, uppaal, and the directories bin-Linux, bin-Win32, and demo. The

bin-directories should all contain the two files server(.exe) and verifyta(.exe) plus some

additional files, depending on the platform. The directory demo should contain some

demo files with suffixes .xml, and .q.

5. Make sure you have at least Java 11 configured on your system. The UPPAAL GUI will

not run without Java installed. Java for Windows and Linux can be downloaded from

adoptopenjdk.

6. To run UPPAAL on Linux systems run the startup script named uppaal. To run on

Windows systems, just double-click the file uppaal.jar.

1 https://uppaal.org/downloads/

VeriDevOps Project nr: 957212 15



D4.4 Tools for prevention at design level-final version

2.2. New compared to D4.1

We extended the use of UPPAAL for combining model-based analysis and testing. The results revealed

that the time taken by UPPAAL to create and execute the model is negligible compared to a manual

transformation. As the complexity of the model increases, the time taken to transform these models

manually increases with the number of vertices and edges. In contrast, UPPAAL now is extended by the

use of a new tool, called GW2UPPAAL, that can automate this modeling step and can reduce the time

needed to verify the created models and the security requirements.

3. CompleteTest - Model Generation and

Vulnerability Detection using Model Checking

3.1. General description

CompleteTest [8] is a method in which the model is annotated and the properties to be checked are

expressible as a single sequence. In contrast to other approaches, CompleteTest provides an approach

to generate test cases for different code coverage criteria that are directly applicable to industrial

control IEC 61131-3 software. In CompleteTest, the UPPAAL model-checker is used for automatic test

generation based on code and mutation coverage criteria. For a detailed overview of testing with

model checkers, we refer the reader to Fraser et al. [9]. One important part of this method is the

model generation capability. The rest of the method is used for test generation (as shown in Figure 10).

Figure 10. Graphical Interface of the CompleteTest Method and its Toolbox

The translation scheme (from a program to a timed automata model) is included when using the

importing function of CompleteTest and is outlined in Figure 11. CompleteTest is automatically calling

the UPPAAL model checker for verification purposes. In practice, the timed behavior of a Function

Block Diagram (FBD) [10] program is defined as a network of timed automata, extended with data

input and output variables. We first perform an automatic transformation of the FBD program to a

timed automaton that obeys the read-execute-write semantics of the FBD program, hence preserving

VeriDevOps Project nr: 957212 16



D4.4 Tools for prevention at design level-final version

the semantics of FBDs without altering its structure. Next, we specify the execution of each block and

construct a complete timed automata model by the parallel composition of local behaviors.

Figure 11. Model Transformation Methodology for CompleteTest.

A generic timed automata network of an example FBD program (Compressor Start Enable program)

together with its cycle scan (plcSupervision()) and Input/Output models is shown in Figure 12. To

introduce resets in the model, we annotate the cycle scan with a reset transition leading to the initial

ReadInputs location. On this transition all variables and parameters (excluding encoded internal

variables) are reset to their default value. This reset is hardcoded into the PLC supervision for any

modeled FBD program in UPPAAL, being an atomic communication between all timed automata.

VeriDevOps Project nr: 957212 17



D4.4 Tools for prevention at design level-final version

Figure 12. Overview of the Timed Automata Network obtained from CompleteTest for an example FBD

program.

Once the model is generated, we can automatically check properties by characterizing a logic coverage

criterion as a temporal logic property or any security requirements specified as UPPAAL TCTL

properties. We use the PROPAS (The PROperty PAttern Specification and Analysis) tool (described in

D2.2 in WP2 and outlined in the overall method in Figure 1) to specify these security requirements

from textual descriptions of security threats and vulnerability scenarios. Requirements can be written

manually or generated from requirement patterns using PROPAS and then used as formalized security

requirements. By using a translated FBD program, we use logic coverage or security requirements

related to FBD interfaces to directly annotate both the model and the temporal logic property to be

checked. Security requirements obtained from the formalization using PROPAS are used in their TCTL

form. For instance, the TCTL property could be: AG(input1 >10 -> AF<=1(SUT.state1)). Such properties

can be written manually or generated from requirement patterns using PROPAS. In the end, we can use

such properties in our method to discover vulnerabilities early on when the design is available and can

be transformed from the system under test. During design, we propose the annotation with auxiliary

data variables and transitions in such a way that a set of paths can be used as a finite test sequence. In

addition, we propose to describe the temporal logic properties as logic expressions satisfying certain

logic coverage criteria. Informally, our approach is based on the idea that to get logic coverage and

security requirements of a specific program, it would be sufficient to (i) annotate the conditions and

decisions in the FBD program, (ii) formulate a reachability property for logic coverage and security

requirements, and (iii) find a path from the initial state to the end of the FBD program.

VeriDevOps Project nr: 957212 18



D4.4 Tools for prevention at design level-final version

3.2. Relation to VeriDevOps and CaseStudies

CompleteTest will be used on the ABB use case by targeting the integration with the CODESYS2

development environment during design generation for FBD programs. It focuses on prevention at the

design level using FBD IEC 61131-3 programs by automatic checking of predefined logic properties

related to the interfaces of these FBD programs. As a result of the transformation, we compose such

local automata in parallel to a TA. The purpose of the transformation is to construct a target model by

filling the TA with the corresponding behavior as explained. Since FBD programs allow the use of

behavioral notations, we exploit this and specify the behavior by assigning a TA model to each element

mapped from its corresponding FBD program (Scenario ABB_S2). Specifically, the main benefit of using

this method is to verify the FBD level vulnerabilities using specific test requirements or from various

coverage criteria related to security attacks. Without employing such a tool, the drawback is that one

cannot verify at design time that certain vulnerabilities are not present in the specification or design.

Both FAGOR and ABB use cases are targeted, but it is believed that the majority of case scenarios

would benefit from the methods and tools discussed in this Deliverable. The SMC modeling approach

will consider the security requirements and policies as well as the control system and the attack model.

An example of the benefits of using CompleteTest and the UPPAAL model checker for prevention at the

design stage is that the verification results may be used to identify the vulnerabilities for possible

design improvements and to suggest possible further additions of security constraints w.r.t., e.g., value

and range constraints, the dependency between device states and process variables etc. When

employing UPPAAL, we need to augment normal system modeling with an environment model to

simulate the potential security attacks.

3.3. Detailed overview for relevant usage scenarios

Use Case Scenario 1 - Model Transformation (ABB_S1). To model check an FBD program we map it to

a finite state system suitable for model checking. To cope with timing constraints, we have chosen to

map FBD programs to timed automata.

Use Case Scenario 2 - Property Annotation and Model Checking (ABB_S2). We annotate the

transformed model such that a condition describing a single test case can be formulated. This is a

property expressible as a reachability property used in most model checkers.

2 https://www.codesys.com/products/codesys-engineering/development-system.html

VeriDevOps Project nr: 957212 19



D4.4 Tools for prevention at design level-final version

3.4. How to get it, install it, licensing

CompleteTest is an academic tool and it is currently in an early beta version. You can always grab the

latest version here and use it freely3, but only as part of your academic work. Once you have

downloaded both the CompleteTest and UPPAAL, extract the completetest.zip archive and place

verifyta.exe from the UPPAAL bin-Win32 folder to verifyta\bin-Win32 folder of CompleteTest. After you

have placed verifyta.exe to the correct folder, run the tool either by double-clicking on CompleteTest.jar

or from a command line by typing:

java -jar CompleteTest.jar

This tool is developed in Java and it requires java version 1.7 to be present on the system. You can

always check the version of java you have installed from a command line by typing:

java -version

We suggest having a look at examples located in the samples folder.

3.5. New compared to D4.1

The work on extending CompleteTest towards security test generation and program analysis has

progressed. We assume the PLC has been configured for remote access. This allows the threat actor to

directly access the PLC and execute malicious commands with no defensive controls to circumvent. This

could be enacted by low-skilled threat actors. Attention to FBD code vulnerabilities has not been a

great concern as that of network related ones. That is because companies, developers, and

programmers assume that the programs that are running within the PLCs are safe and secure as long as

there is no network intruder. In the work done to support prevention at design level, we aim to solve

the challenge of FBD programs that can carry within their own destructive threats and vulnerabilities

that can be exploited by hackers or regular disgruntled users. The vulnerabilities come from the way

the code is written or designed. Potential security requirements at code level that are handled using

this method:

● input operations can take place only at allowed times

● prevents attackers to execute operations outside the regular flow

● input validation - check unallowed input values are handled

● out of bound data: divide by zero, counter overflow, negative counter or timer preset, I/O scan

overrun

3 https://github.com/eduardenoiu/CompleteTest

VeriDevOps Project nr: 957212 20



D4.4 Tools for prevention at design level-final version

● inputs or outputs are those that physically cannot happen at the same time; they are mutually

exclusive.

● false negatives and false positives (shortcuts in logic).

4. PyLC [new]

4.1. General description

Many industrial application domains utilize safety-critical systems to implement Programmable Logic

Controllers (PLCs) software. These systems typically require a high degree of testing and stringent

coverage measurements that can be supported by state-of-the art automated test generation

techniques. However, their limited application to PLCs and corresponding development environments

can impact the use of automated test generation. Thus, it is necessary to tailor and validate automated

test generation techniques against relevant PLC tools and industrial systems to efficiently understand

how to use them in practice. In this paper, we present a framework called PyLC, which handles PLC

programs written in the Function Block Diagram (FBD) and Structured Text (ST) languages such that

programs can be transformed into Python. To this end, we use PyLC to transform industrial

safety-critical programs, showing how our approach can be applied to manually and automatically

create tests in the CODESYS development environment. We use behavior-based, translation

rules-based, and coverage-generated tests to validate the PyLC process.

PyLC transforms the PLC program into Python which is an open-source dynamic programming language

that Guido van Rossum invented in 1990. Python has gained massive popularity during the last 20

years. Based on the latest statistics of top programming languages in 2022, Python is the top

programming language worldwide based on TIOBE and PYPL Index4. Python is chosen as the

destination language in the PyLC translation framework because it has good compatibility with parsing

XML files, a widespread format used when dealing with PLCOpen formats used in the PLC IDEs for file

exchange. The Python Test Automation Framework (TAF) we have chosen in this work is Pynguin [11] ,

a state-of-the-art automated test case generation tool for Python programs that uses search-based

algorithms. It supports four different well-known search-based test case generation algorithms,

including MOSA [12], DYNAMOSA [13], MIO [14], and WHOLE SUITE [15]. It is also equipped with a

random test generator named RANDOM , which works based on the RANDOOP algorithm [16]. We

note here that Python is the only non-IEC 61131-3 programming language officially supported by

CODESYS IDE (a well-known PLC IDE) and can be directly compiled inside the IDE.

4 https://statisticstimes.com/tech/top-computer-languages.php

VeriDevOps Project nr: 957212 21



D4.4 Tools for prevention at design level-final version

The overall translation work flow of PyLC consists of four main phases chained to each other and

working sequentially to eventually enable automatic test generation for PLC programs via Pynguin.

Figure 13 shows the framework’s workflow, while more details of each phase are described in the

related paper. The first step is transforming the PLC program into Python code by considering the

Translation Rules and PLC code specifications based on the IEC 61131-3 standard (Steps 1 and 2). Then

the generated Python code is fed into the Translation Validation module, which checks the correctness

of the transformed PLC code in Python based on the three different unit testing mechanisms (Step 3).

Finally, the Translation Validation module of the transformed code (Step 4) uses unit testing to ensure

that the code is scrutinized for proper use in further analysis and test generation.

Figure 13: An Overview of the PyLC Framework, the Proposed Translation Mechanism for Translating a

PLC Program into Python Code and Validating the Translation.

Translation Process. Our translation policy includes two common programming languages of IEC

61131-3: ST and FBD. Since ST is a textual programming language like Python, the transformation

process is more straightforward. It includes translating each logical operator (e.g. AND, XOR, OR

functions) into the corresponding operator in Python and mapping these together based on the

network of the original PLC program. The rest of the section explains the transformation rules and

validates the generated Python code. The translation process of our framework consists of 7 main

steps, which can be observed in Figure 14. The translation process starts by analyzing the PLC

program’s inputs and outputs, transforming the input signals into Python function arguments, and

considering the output signals as global variables in Python (Steps A, B). Then, the functionality of each

interface Function and Function Block (FB) inside the PLC program (e.g. AND, XOR, TON) is analyzed

based on their standardized functionality description in IEC61131-3 documentation (Step C). In the

next step, the identified interface FBs are transformed into corresponding Python sub-functions that

represent the same functionality based on the Block translation rules described in the rest of this

section (Step D). After translating the blocks into sub-Python functions and feeding them with the

VeriDevOps Project nr: 957212 22



D4.4 Tools for prevention at design level-final version

inputs as main Python function arguments, we analyze the network between different FBs, inputs, and

outputs in the original PLC program to simulate these connections in the Python code and correctly

map the elements to each other (Step E). The final step is identifying the execution order of the

program elements inside the PLC program and implementing it in the translated Python code (Steps F,

G).

Figure 14: The Translation Workflow (TWF) Used in PyLC Framework for Translating a PLC Program into

Python.

An overview of the translation rules we adhere to in the translation process is observed in Table 1. It is

worth mentioning that every described step in this table is done by considering IEC 61131-3

specifications for the PLC program elements under translation. In other words, the translation

mechanism is realized by using all the translation rules.

VeriDevOps Project nr: 957212 23



D4.4 Tools for prevention at design level-final version

Table 1: Translation Rules (TR) of the Proposed PLC Program to Python Code Considering IEC-61131-3

Standard

Validation of the Translated Code. To validate the correctness of the translated code in Python, we

propose a unit testing-based validation mechanism that consists of 3 different validation types,

including 1) requirement-based testing, 2) translation rules checking, and 3) search-based test

generation. To check the validity of the translated code, we generate and execute unit test cases that

meet the requirements of each validation category. It should be noted that our proposed validation

mechanism is not used to demonstrate the semantic equivalence of the source and target programs.

Instead, we aim to validate the transformation through unit testing and conformance tests.

Conformance tests are made to verify whether the PyLC results comply with the requirements imposed

by the PLC program definition and the translation rules checks. The proposed translation validation

mechanism consists of 8 main steps and can be observed in Figure 15. More explanation on each step

of the hybrid Unit-Testing Validation Mechanism of the Translated PLC Code in Python can be found in

the related publication [17].

VeriDevOps Project nr: 957212 24



D4.4 Tools for prevention at design level-final version

Figure 15: An Overview of The hybrid Unit-Testing Validation Mechanism of the Translated PLC Code in

Python

At this stage, PyLC can only validate the correctness of the code translation from PLC to Python from

requirements and behavior points of view but we plan to equip it with a powerful automatic static

verifier of Python named Nagini [18] which works based on Viper verification infrastructure to validate

the translation correction semantically as well.

4.2. Relation to VeriDevOps and CaseStudies

We consider ten different PLC programs to evaluate our proposed translation framework in real-world

circumstances, including 6 ST and 4 FBD programs that are provided to us by a big automation

company in Sweden.

The first validation mechanism we used is Unit Testing Validation based on Requirements which is

behavior validation of the translated PLC programs into Python is done via requirements-based testing.

It means that for each PLC program transformed into Python, the actual behavior of the translated PLC

VeriDevOps Project nr: 957212 25



D4.4 Tools for prevention at design level-final version

program in Python is compared with the expected behavior in the original PLC program based on test

cases covering all stated requirements. For six out of ten translated PLC programs (PRG5 to PRG10),

both categories of the aforementioned requirement-based test cases are executed on the original PLC

program in CODESYS IDE using CODESYS Test Manager. The result of executing these test cases on both

Python and PLC environments is then compared. We find that the same test case execution status is

obtained in CODESYS IDE, indicating the program’s accurate translation using PyLC Framework

according to the specific tested requirements. The reason behind excluding four PLC programs from

this process is that these programs are designed to analyze some data directly from specific hardware

cameras, and altering these inputs manually in CODESYS Test Manager is not feasible directly using unit

testing.

The second validation mechanism we leveraged is Checking PyLC Translation Rules which is an

investigation of the use of checks related to our translation rules. For each PLC program, we have

designed several unit test cases that investigate the alignment of the translated programs to the

proposed translation rules in PyLC. These test cases check if the transformation of certain PLC

elements(i.e., input(s), output(s), data type, data range, FB behavior, FB network, execution order, and

cyclic execution) produces valid elements in the translated PLC programs. We have developed test

cases manually using the Python unittest tool.

The third and final validation mechanism we used in validating the correctness of the translation in

PyLC is Validation using Pynguin Test Generation. In this validation mechanism we leverage Pynguin,

an automated search based testing framework for Python, within our framework. Among all of the

supported search-based algorithms of Pynguin, we use DYNAMOSA (Pynguin’s default algorithm) as

our algorithm of choice for generating test cases. We have followed Pynguin’s default configuration

using DYNAMOSA, a test generation time budget of 10 minutes, and mutation analysis enabled. The

results of automated test generation and execution on ten considered PLC programs of this study using

Pynguin are shown in Table 2. As it is visible in the gathered results, all of the generated mutants for

PRG1 to PRG 10 have been killed by the Pynguin TAF except the generated mutants for PRG5. We

believe the reason behind this result is the limited time budget of 10 mins that we considered for

automatic test generation using Pynguin TAF (i.e., we forced the mutation analysis process to stop

immediately after 10 minutes and not all mutants are targeted).

VeriDevOps Project nr: 957212 26



D4.4 Tools for prevention at design level-final version

Table 2: Results of Automatic Test Generation/Execution for Translated PLC Programs using Pynguin TAF

The results of generating and executing test cases for the translated PLC programs into Python using

PyLC show that this method is feasible for validating the transformation and test generation during the

development of PLC programs. However, using other search-based algorithms and increasing the test

generation budget, especially for large programs such as PRG4, might increase the obtained code

coverage and improve the mutation analysis results. In the end, we execute the generated test cases on

the original PLC programs in CODESYS IDE to investigate whether their execution in the original PLC

environment produces the same results. Executing the test cases in CODESYS IDE has been done via

CODESYS Test Manager.

4.3. Detailed overview for relevant usage scenarios

We have successfully applied our PyLC approach to transform and validate PLC programs. We also

evaluated the applicability and efficiency of our proposed framework by applying it to the different

industrial PLC programs. However, a significant threat to the validity of our experiments is the question

of the representativity of the programs used. While our case study does not cover the whole range of

possibilities of program transformations, these programs are still distinct from one another and of

different sizes.

We believe the PyLC can be evolved by becoming fully automated by parsing in CODESYS the PLC

program and using the test manager to generate and execute test cases without user intervention to

minimize the manual overhead. Another direction for future research, is to equip PyLC with a formal

verification mechanism, to increase correctness assurance. The final contribution for future work can

be investigating the performance of the different search-based algorithms in generating more effective

test cases for evolving PLC programs.

VeriDevOps Project nr: 957212 27



D4.4 Tools for prevention at design level-final version

The planned future version of PyLC can enable automated search-based test generation and execution

for both code development and DevOps operations teams in industry. The involved engineers in

aforementioned teams can use PyLC to automatically generate and execute meaningful search-based

tests on the code under development. Moreover, PyLC brings automated Mutation Analysis to the

world of PLC testing which can help the testers to have a better analysis of the faulty parts of the code

under development. Considering the current manual state of the practice for PLC testing in industry,

using efficient PLC TAFs such as PyLC can boost up the testing process and save a considerable amount

of time and energy for industrial automation companies.

5. GW2UPPAAL [new]

5.1. General description (purpose, features, interfaces)

We propose a hybrid approach that can perform an automated analysis of a GW model by transforming

it into a UPPAAL model and generating queries that are automatically verified by running “verifyTA”

without actually running the GUI of UPPAAL to perform model checking. An initial evaluation shows

that the time taken by our tool for transforming these models is consistently lower when compared to

manually creating the model and properties in UPPAAL and checking these using the GUI. However,

checking other properties corresponding to software requirements requires manual intervention to

generate queries. Thus, our proposed approach is the first step toward combining model-based testing

with automated analysis and verification tools, which can be further modified to create a more realistic

and complex set of properties.

For this purpose, we developed a hybrid approach that transforms a model obtained from an

Model-Based Testing (MBT) automation tool into a model compatible with a state-of-the-art model

checker. In addition, we automate the process of model checking by generating some queries to verify

the model. To achieve this, we used a well known open-source MBT tool named GraphWalker (GW)5 .

Models in GW are created in the form of directed graphs. This tool lacks the capability to automatically

analyze and verify if the model corresponds to certain requirements. For this purpose, we are using a

state-of-the-art model checker called UPPAAL to perform model checking. This integrated tool

environment allows developing models as a network of timed automata and can verify specific

properties on these models.

5 https://graphwalker.github.io/

VeriDevOps Project nr: 957212 28



D4.4 Tools for prevention at design level-final version

Figure 16. The overall method for combined model-based analysis using model-checking and the

relation to testing at design level.

In Figure 16, an overall method for model-based analysis and test generation is identified. A generic

process of combined model-based analysis and test generation proceeds as follows:

● Step 1. Requirements artifacts are used or created for the purpose of guiding the test

generation and analysis. In our case, the requirement artifact is either a specification of what

the System-under-Test (SUT) should do in different forms (e.g., finite-state model).

● Step 2. A model is obtained using a testing tool that can be used for modeling an MBT model

objective. The first step of modeling involves a human understanding the requirements and

exploring the requirements specification document. For example, an FSM-based model

consists of nodes and directed edges. The nodes represent the state of the system, whereas

edges represent the requests/decisions when a certain event occurs.

● Step 3. In this step an automatic transformation is needed to map the test model to an analysis

model used for model checking. For example, in the case of a finite-state model, guards,

actions and variable declarations are used to generate a formal model.

● Step 4. Given a formal model of the system , a model checker can be used to analyze the model

given certain formalized requirements, for example, as a temporal logic formula. The

model-checker returns an answer, and in some situations a model trace.

● Step 5. Based on the analysis results, the engineer could make certain changes to the original

model and can continue using the MBT model for test generation.

● Step 6. Using model-based test generation that encodes the test criteria and describes how the

test generator should choose the resulting tests, one can generate test cases based on certain

goals (e.g., model coverage, random test goals).

● Step 7. A test suite is generated by running the model over many possible executions using a

certain model based test generation tool.

VeriDevOps Project nr: 957212 29



D4.4 Tools for prevention at design level-final version

For more details on the implementation and usage of GW2UPPAAL we refer the reader to the study of

Tiwari, Iyer and Enoiu [19] .

5.2. Relation to VeriDevOps and CaseStudies

We evaluated the tool with models containing single as well as multiple diagrams from different

sources including functional, safety and security requirements. Multiple diagrams are essentially part

of a single model but are divided into multiple diagrams for better understanding and ease of use.

These diagrams are connected by using shared vertices. A shared vertex is a vertex in the diagram that

can be shared between multiple diagrams so that the test runner can execute the whole model, where

the shared state is defined. This tool transforms it into a single model by flattening all the multiple

diagrams. This is needed since UPPAAL does not directly support multiple diagrams in the same way as

GW does. GW2UPPAAL is used on the ABB use case by targeting the integration with the requirements

provided for FBD programs. It focuses on prevention at the design level using IEC 61131-3 programs by

automatic checking of predefined logic properties related to the interfaces of these programs. The

purpose of the transformation is to construct a target model by filling the model with the

corresponding behavior as explained. Since IEC 61131-3 programs allow the use of behavioral

notations, we exploit this and specify the behavior by assigning a TA model to each element mapped

from its corresponding IEC 61131-3 program (Scenario ABB_S2 and Scenario ABB_S1). Specifically, the

main benefit of using this method is to verify the model level vulnerabilities using specific test

requirements related to security attacks and safety concerns. Without employing such a tool, the

drawback is that one cannot verify (both analysis and test generation) at design time that certain faults

and vulnerabilities are not present in the specification or design.

5.3. Detailed overview for relevant usage scenarios

The combined MBT and analysis technique implemented in GW2UPPAAL is shown in Figure 17. It is

divided into the following five usage scenarios:

● 1) The test designer creates a GW model, which is exported as JSON.

● 2) In the next step, the JSON file is then imported into the tool by providing the file’s location

before executing the tool (JAR) in the command.

● 3) While running the GW2UPPAAL tool, the UPPAAL model in XML format is generated and

used for analysis.

● 4) The generated UPPAAL model is then imported and executed by starting verifyta and

providing the name of the generated model. This model also contains the queries to check the

reachability and deadlock properties tested by executing “verifyta”. 5) The results of this

VeriDevOps Project nr: 957212 30



D4.4 Tools for prevention at design level-final version

verification is then visually displayed and a test engineer will use these to analyze the model in

the UPPAAL simulator to adapt the model in GW before test generation. Apart from automated

analysis, the generated model can also verify manually created queries to gain more

confidence in the developed model before testing.

Figure 17. The overall architecture of GW2UPPAAL tool and the interaction with GraphWalker for test

generation.

Use Case Scenario 1 - Model Transformation (ABB_S1). To model check an GW model we map it to a

finite state system suitable for model checking.

Use Case Scenario 2 - Model Checking (ABB_S2). We generate properties expressible as a reachability

property used in most model checkers.

5.4. How to get it, install it, licensing

Our tool transforms the GW JSON into UPPAAL compatible XML file to import the model in UPPAAL and

perform model checking. The approach is divided into four steps. The programming language used for

transformation is JAVA. The tool is available in Github6.

Please follow the below instructions:

6 https://github.com/eduardenoiu/GW2UPPAAL

VeriDevOps Project nr: 957212 31



D4.4 Tools for prevention at design level-final version

● Use the ToolOutput folder as the folder where the UPPAAL models will be exported.

● Navigate to the ToolOutput folder and open the terminal/command prompt.

● Type the command: java -jar GW2UPPAAL.jar [path to out-put file folder] [name of the output

file that the tester wants to give] [path to input GW JSON file] [Name of the JSON file that the

tester wants to transform].

6. Modelio

6.1. General description

Modelio is both an open source7 and a commercial8 modeling environment (that supports UML2,

BPMN2, MARTE and SysML among others). Modelio delivers a broad-focused range of standards-based

functionalities for software developers, analysts, designers, business architects and system architects.

Modelio is built around a central repository, around which a set of modules are defined. Each module

provides some specific facilities dedicated to specific needs.

Three functional sets of modules seem to be the most relevant in our context. These functional

sets are the following:

● Modeling and consistency check: UML [20], SysML [21], BPMN [22] are a subset of the long list

of standards supported by Modelio. The most relevant languages, in VeriDevOps context, seem

to be the one’s related to Requirement, System, and Test modeling. Modelio allows the usage

of a specific (the most relevant) language combination but also checking related to specific

language usage. For example, Figure 18 depicts data modelling of a web application.

8 https://www.modeliosoft.com/en/

7 https://www.modelio.org/

VeriDevOps Project nr: 957212 32



D4.4 Tools for prevention at design level-final version

Figure 18. Example of the modeling under Modelio.

● Text generation: Modelio has powerful code generation and reverse engineering modules for

Java, C# and C++ language. Moreover, it is able to generate documentation in several formats

(e.g., HTML or OpenXML) which can be stored in the Modelio repository (Figure 19).

Figure 19. Example of the Java modeling (on left) and generated Java code (on right).

VeriDevOps Project nr: 957212 33



D4.4 Tools for prevention at design level-final version

● Impact analysis and traceability: As already stated Modelio is able to provide several modeling

levels each of them targeting specific stakeholders. Traceability and impact analysis can help to

determine the cost, in terms of security for example, of any changes if part of a model is

modified. This mechanism helps discover the value of an entire model by clearly identifying

which and how many model elements are the most costly vulnerable for example (Figure 20).

Figure 20. The Modelio link editor (on left) and the Modelio matrix (on right).

6.2. Relation to VeriDevOps and CaseStudies

In VeriDevOps context, Modelio mainly targets the FAGOR use case by automating:

● the detection of known vulnerabilities and attacks and providing automatic countermeasures

or manual recommendations for decision support.

● the extraction of security recommendations (or requirements) and perform related tests.

The above are implemented in Modelio by employing the Seamless Object Oriented Requirements [23]

(SOOR) concept which suggests the creation of requirements by following the Object-Oriented

Programming (OOP) paradigm. In the latter, each requirement is specified as a class, including the

requirement definition in a textual form, but may also include other types of representations such as

Linear Temporal Logic (LTL) formula or simply a test case for requirements validation. The relations

among requirements may be expressed in terms of associations and inheritance. The OOP analysis may

be applied to argue about reusability, complexity or maintainability of the set of requirements. In

VeriDevOps, we implemented SOOR in Java language. By reversing Java code with Modelio, we obtain

the requirements specification in UML. Modelio provides the ability to verify syntax of UML models

and provides recommendations for OOP analysis through audit rules and specific metrics.

In this project, Modelio is the only tool providing such capability for specifying security

requirements using object-oriented concepts in an executable form. The following section details how

VeriDevOps Project nr: 957212 34



D4.4 Tools for prevention at design level-final version

the VeriDevOps consortium plans to use Modelio in two of the FAGOR use case scenarios respectively

FAG_S3 and FAG_S4, as detailed below.

6.3. Detailed overview for relevant usage scenarios

Alignment of the Edge Device configuration to the NIST Framework (FAG_S3)

The main goal of this Use case consists in having a Modelio extension able to automatically identify

NIST framework security requirements and store them inside Modelio. For each stored requirement,

create a model of the required test environment to be able to generate the test set needed.

Vulnerability verification and correction suggestions (FAG_S4)

In this particular use case, VeriDevOps plans to define an action repository. Each action will be related

to identified and known vulnerabilities which will be detected from product description. So according

to a specific product description, a set of vulnerabilities will be identified conducting to a related set of

actions to protect the product.

With regards to the above scenarios, the following Modelio related analysis should be applied. For

example, in case an industrial PC runs on Ubuntu Linux distribution, STIG guidelines can suggest

disabling a certain number of packages. For, example STIG recommendation V_219157 states:

“Removing the Network Information Service (NIS) package decreases the risk of the accidental (or

intentional) activation of NIS or NIS+ services.”.

This recommendation suggests removing the NIS package from the system. We implemented these and

many other recommendations as a SOOR in Java - the process that we called RQCODE (Requirements

as a code). While implementing the requirements and reversing them to UML with Modelio for

analysis, we discovered a number of patterns. One of these patterns deals with disabling or enabling

system packages. Separating the PackagePattern (Figure 21) from the actual implementation of

disabling particular packages helps to maintain the system of requirements, reuse it in other

distributions and control complexity and well formedness through Modelio.

VeriDevOps Project nr: 957212 35



D4.4 Tools for prevention at design level-final version

Figure 21. RQCODE UbuntuPackagePattern in UML with Modelio

In case of PackagePattern, it can be extended to CentOS distribution that uses a different package

manager (e.g., rmp instead of apt) - changing one pattern class will help to run the same security

recommendations in a new system. Thus the approach improves efficiency and reduces a duplication in

the important security related routines.

In this scenario, reversing RQCODE in Modelio helps to manage requirements on the higher System

Level, while providing capabilities for syntax check and audit of OOP constructions in requirements and

recommendations.

6.4. How to get it, install it, licensing

Modelio exists in two versions 1) Open Source and 2) Commercial. The following sections explain how

to get both of them. In VeriDevOps context, the consortium is using the commercial one mainly

because it is the only one to provide Requirement modeling.

6.4.1. Modelio Open Source

For information on supported operating systems and required libraries, check system requirements. To

install Modelio open source starts by:

1. Download Modelio.

2. Extract the package into the directory of your choice [1].

3. Start Modelio.

When Modelio starts, one will get a welcome page with useful hints (Figure 22):

VeriDevOps Project nr: 957212 36



D4.4 Tools for prevention at design level-final version

Figure 22. The Modelio welcome screen

Then one can create the first project.

6.4.2. Modelio Commercial

To get the commercial version of Modelio, if you are an educational institute please check the Modelio

Academic Program otherwise evaluate it for ten days check Modelio Ten Days Evaluation.

6.5. New compared to D4.1

The VeriDevOps verification tools have been ported and tested with the latest version of the Java

Designer modules on the Modelio 5.3.

7. Conclusions
This deliverable extends our previous approaches and presents several new ones to improve the

modeling, testing, and analysis of industrial control systems. Firstly, the GW2UPPAAL tool is introduced

to automate the modeling step and reduce the time required for the verification of security

VeriDevOps Project nr: 957212 37



D4.4 Tools for prevention at design level-final version

requirements. Secondly, the CompleteTest approach is extended to address potential vulnerabilities in

FBD programs, ensuring that they are not susceptible to attacks. Thirdly, the Modelio tool is updated to

use the latest version of Java, improving its performance. Fourthly, the PyLC framework is proposed,

enabling the transformation of PLC programs into Python code and generating effective tests to

validate safety-critical industrial programs. Lastly, an approach for automated analysis of a

GraphWalker model is presented, demonstrating that it takes less time to create a model in

GraphWalker and transform it into a UPPAAL model than creating a model directly in the UPPAAL GUI

tool. Overall, the proposed tools and approaches aim for improving the safety and security of industrial

control systems.

References

[1] VeriDevOps project consortium, ‘D4.1 Tools for prevention at design level - initial version’, project
deliverable, Apr. 2021.

[2] G. Behrmann, A. David, and K. G. Larsen, ‘A Tutorial on Uppaal’, in Formal Methods for the Design
of Real-Time Systems: International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, Bertinora, Italy, September 13-18, 2004, Revised Lectures,
M. Bernardo and F. Corradini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
200–236. doi: 10.1007/978-3-540-30080-9_7.

[3] R. Alur, ‘Timed Automata’, in Computer Aided Verification, Berlin, Heidelberg, 1999, pp. 8–22.
[4] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou, ‘Testing Real-Time

Systems Using UPPAAL’, in Formal Methods and Testing: An Outcome of the FORTEST Network,
Revised Selected Papers, R. M. Hierons, J. P. Bowen, and M. Harman, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 77–117. doi: 10.1007/978-3-540-78917-8_3.

[5] I. AlAttili, F. Houben, G. Igna, S. Michels, F. Zhu, and F. Vaandrager, ‘Adaptive Scheduling of Data
Paths using Uppaal Tiga’, ArXiv E-Prints, p. arXiv:0912.1897, Dec. 2009.

[6] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, ‘Symbolic model checking for real-time
systems’, in [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer
Science, 1992, pp. 394–406. doi: 10.1109/LICS.1992.185551.

[7] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen, ‘Uppaal SMC tutorial’, Int. J.
Softw. Tools Technol. Transf., vol. 17, no. 4, pp. 397–415, Aug. 2015, doi:
10.1007/s10009-014-0361-y.

[8] E. P. Enoiu, A. Čaušević, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and P. Pettersson, ‘Automated
test generation using model checking: an industrial evaluation’, Int. J. Softw. Tools Technol. Transf.,
vol. 18, no. 3, pp. 335–353, Jun. 2016, doi: 10.1007/s10009-014-0355-9.

[9] G. Fraser, F. Wotawa, and Paul. E. Amman, ‘Testing with model checkers: a survey’, Softw. Test.
Verification Reliab., vol. 19, no. 3, pp. 215–261, 2009, doi: 10.1007/s10009-014-0355-9.

[10] J. Karl Heinz and M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems.
Concepts and Programming Languages, Requirements for Programming Systems, Decision-Making
Aids, 2nd ed. Springer Berlin, Heidelberg. [Online]. Available:

VeriDevOps Project nr: 957212 38



D4.4 Tools for prevention at design level-final version

https://doi.org/10.1007/978-3-642-12015-2
[11] S. Lukasczyk, F. Kroiß, and G. Fraser, ‘Automated Unit Test Generation for Python’, in Search-Based

Software Engineering, vol. 12420, A. Aleti and A. Panichella, Eds. Cham: Springer International
Publishing, 2020, pp. 9–24. doi: 10.1007/978-3-030-59762-7_2.

[12] A. Panichella, F. M. Kifetew, and P. Tonella, ‘Reformulating Branch Coverage as a Many-Objective
Optimization Problem’, in 2015 IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST), Graz, Austria, Apr. 2015, pp. 1–10. doi: 10.1109/ICST.2015.7102604.

[13] A. Panichella, F. M. Kifetew, and P. Tonella, ‘Automated Test Case Generation as a Many-Objective
Optimisation Problem with Dynamic Selection of the Targets’, IEEE Trans. Softw. Eng., vol. 44, no. 2,
pp. 122–158, Feb. 2018, doi: 10.1109/TSE.2017.2663435.

[14] A. Arcuri, ‘Many Independent Objective (MIO) Algorithm for Test Suite Generation’, in Search
Based Software Engineering, vol. 10452, T. Menzies and J. Petke, Eds. Cham: Springer International
Publishing, 2017, pp. 3–17. doi: 10.1007/978-3-319-66299-2_1.

[15]G. Fraser and A. Arcuri, ‘Whole Test Suite Generation’, IEEE Trans. Softw. Eng., vol. 39, no. 2, pp.
276–291, Feb. 2013, doi: 10.1109/TSE.2012.14.

[16] C. Pacheco and M. D. Ernst, ‘Randoop: feedback-directed random testing for Java’, in Companion to
the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications
companion, Montreal Quebec Canada, Oct. 2007, pp. 815–816. doi: 10.1145/1297846.1297902.

[17]M. E. Salari, E. P. Enoiu, W. Afzal, and C. Seceleanu, ‘PyLC: A Framework for Transforming and
Validating PLC Software using Python and Pynguin Test Generator’, in The 38th ACM/SIGAPP
Symposium On Applied Computing (SAC 2023), Apr. 2023.

[18]H. Chockler and G. Weissenbacher, Computer Aided Verification: 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I. Springer Nature, 2018.

[19] S. Tiwari, K. Iyer, and E. P. Enoiu, ‘Combining Model-Based Testing and Automated Analysis of
Behavioural Models using GraphWalker and UPPAAL’, in 2022 29th Asia-Pacific Software
Engineering Conference (APSEC), 2022, pp. 452–456. doi: 10.1109/APSEC57359.2022.00061.

[20] ‘OMG Unified Modeling Language’. [Online]. Available: https://www.uml.org/
[21]O. Casse, ‘SysML: Object Management Group (OMG) Systems Modeling Language’, SysML in Action

with Cameo Systems Modeler. pp. 1–63, 2017.
[22]OMG, ‘Business Process Model and Notation (BPMN)’. [Online]. Available:

https://www.omg.org/bpmn/
[23] A. Naumchev, ‘Seamless Object-Oriented Requirements’, in 2019 International Multi-Conference on

Engineering, Computer and Information Sciences (SIBIRCON), 2019, pp. 0743–0748.

VeriDevOps Project nr: 957212 39


