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Motivation

• Objective

• Ensure software systems are resilient against cyberattacks

• Identifying and remediating vulnerabilities in software 

systems to mitigate the risk of possible exploitation

• Integrating the verification and vulnerability localization in 

the DevOps lifecycle to maintain cyber resilience
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Methodology

• Efficient verification of software systems that lacks an explicit 

test oracle                 Metamorphic testing phase

• To identifying vulnerabilities and perform root cause analysis 

in software systems                Fault localization phase 
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Overview
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Metamorphic testing

• Why are certain programs considered non-testable ?

▪ Lack of an explicit test oracle

▪ Complexity

▪ Vast input space
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Metamorphic testing

• An approach to create follow-up tests from existing tests

• Can be used to uncover underlying errors using 

metamorphic relations

• Metamorphic relations can be defined based on system 

properties
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Metamorphic testing steps

1) Define the metamorphic relations for testing the system

2) Extract/generate seed input

3) Create morphed input by applying the morphing 

transformation

4) Check the metamorphic relation between seed output and 

morphed output
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Fault localization

• Spectrum-based fault localization

• Program slicing
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Spectrum-based fault localization

• Locates likely faulty program elements using program 

spectra

• Collects run-time measurements using program 
spectra such as BHS, BCS

• Compares two sets of execution traces

• Passed and Failed
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Program slicing

• Focus on analyzing a slice (relevant part) that may 

contain a fault

• Metamorphic slicing : A slice extracted using execution 

slicing and dynamic slicing of a metamorphic test group
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Case study
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Metamorphic testing steps

● Define the metamorphic relations for testing the system
○ Property : 

”If the system is able to classify  a set of positional markers detected

by the camera module as true markers  in the absence of reflections (noise),  

the system should be able to classify correctly the same positional markers 

in the presence of reflections”

○ Input MR : 𝒔𝒆𝒆𝒅 -> 𝒔𝒆𝒆𝒅 + 𝒏𝒐𝒊𝒔𝒆

○ Output MR: O(𝒔𝒆𝒆𝒅) ≡ 𝑶(𝒔𝒆𝒆𝒅 + 𝒏𝒐𝒊𝒔𝒆)
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Two phase metamorphic testing

• Exploration: Random generation of input patterns to create 

morphed input

• Exploitation: Targeted testing using failure inducing patterns 

discovered in exploration phase
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Test execution

• Execute the tests and assign the test verdict based on MR check

• Collect passed and failed tests
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Metamorphic test results

● 3 categories

○ Correct identification

○ Incorrect identification

○ Missed identification
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Approach – fault localization
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Instrumentation for program spectra
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Test execution

• Execute passed/failed tests against instrumented code

• Collect program spectra (Branch Count spectra)

• Calculate suspiciousness scores
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Suspiciousness scores

● ef: the number of times a statement is 

executed (e) in failed tests

● ep: the number of times a statement is 

executed (e) in passed tests

● nf: the number of times a statement is not 

executed (e) in failed tests

● np: the number of times a statement is not 

executed (e) in passed tests
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Suspiciousness elements extraction

● Uses an average score to identify suspicious elements

o 𝑠𝑎𝑣𝑔 = ( 𝑠𝑂𝑐ℎ𝑖𝑎𝑖 + 𝑠𝐽𝑎𝑐𝑐𝑎𝑟𝑑 + 𝑠𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎) / 3

● Suspicious statements are extracted from the metamorphic slices 

o 𝑆𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑓𝑎𝑖𝑙𝑒𝑑 𝑚𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑡𝑒𝑠𝑡

o 𝑆𝑒𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑜𝑠𝑒 
o 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑛𝑑 𝑢𝑠𝑒𝑑
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Control flow graph
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Control flow graph
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Data flow analysis (1)

● Definition-usage of the variables with high suspicious scores are extracted 

● Analyze definition-use chain of suspicious variables from the metamorphic 

slices to localize the fault (manually at the moment) 
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Call graph
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Data flow analysis (2)

● Def-use chain analysis of variables with highest suspiciousness revealed the 

propagation path and starting point of error

● Camera system: Error was caused by an incorrectly initialized variable

● Upon fixing this and rerunning the metamorphic tests, no failed tests were 

found
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Benefits 

• Alleviates the test oracle problem and can detect code-level 

vulnerabilities

• Assists the developers with root cause analysis and program repair
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Phase Reduction in 

scope of search

Reduction of  

scope of search 

in percentage

Code analysis (eLOC) 233/701 33

Code analysis

(Branch level basic 

block)

65/133 48

Data flow analysis 

(Variable level)

60/170 35



Questions?

Thank you for your attention!
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