
Metamorphic Testing for Verification and Fault

Localization in Industrial Control Systems

VeriDevOps@Åbo

1

Motivation

• Objective

• Ensure software systems are resilient against cyberattacks

• Identifying and remediating vulnerabilities in software

systems to mitigate the risk of possible exploitation

• Integrating the verification and vulnerability localization in

the DevOps lifecycle to maintain cyber resilience

2

Methodology

• Efficient verification of software systems that lacks an explicit

test oracle Metamorphic testing phase

• To identifying vulnerabilities and perform root cause analysis

in software systems Fault localization phase

3

Overview

4

Metamorphic testing

• Why are certain programs considered non-testable ?

▪ Lack of an explicit test oracle

▪ Complexity

▪ Vast input space

5

Metamorphic testing

• An approach to create follow-up tests from existing tests

• Can be used to uncover underlying errors using

metamorphic relations

• Metamorphic relations can be defined based on system

properties

6

Metamorphic testing steps

1) Define the metamorphic relations for testing the system

2) Extract/generate seed input

3) Create morphed input by applying the morphing

transformation

4) Check the metamorphic relation between seed output and

morphed output

7

Fault localization

• Spectrum-based fault localization

• Program slicing

8

Spectrum-based fault localization

• Locates likely faulty program elements using program

spectra

• Collects run-time measurements using program
spectra such as BHS, BCS

• Compares two sets of execution traces

• Passed and Failed

9

Program slicing

• Focus on analyzing a slice (relevant part) that may

contain a fault

• Metamorphic slicing : A slice extracted using execution

slicing and dynamic slicing of a metamorphic test group

10

Case study

11

Metamorphic testing steps

● Define the metamorphic relations for testing the system
○ Property :

”If the system is able to classify a set of positional markers detected

by the camera module as true markers in the absence of reflections (noise),

the system should be able to classify correctly the same positional markers

in the presence of reflections”

○ Input MR : 𝒔𝒆𝒆𝒅 -> 𝒔𝒆𝒆𝒅 + 𝒏𝒐𝒊𝒔𝒆

○ Output MR: O(𝒔𝒆𝒆𝒅) ≡ 𝑶(𝒔𝒆𝒆𝒅 + 𝒏𝒐𝒊𝒔𝒆)

12

Two phase metamorphic testing

• Exploration: Random generation of input patterns to create

morphed input

• Exploitation: Targeted testing using failure inducing patterns

discovered in exploration phase

13

Test execution

• Execute the tests and assign the test verdict based on MR check

• Collect passed and failed tests

14

Metamorphic test results

● 3 categories

○ Correct identification

○ Incorrect identification

○ Missed identification

15

Approach – fault localization

16

Instrumentation for program spectra

17

Test execution

• Execute passed/failed tests against instrumented code

• Collect program spectra (Branch Count spectra)

• Calculate suspiciousness scores

18

Suspiciousness scores

● ef: the number of times a statement is

executed (e) in failed tests

● ep: the number of times a statement is

executed (e) in passed tests

● nf: the number of times a statement is not

executed (e) in failed tests

● np: the number of times a statement is not

executed (e) in passed tests

19

Suspiciousness elements extraction

● Uses an average score to identify suspicious elements

o 𝑠𝑎𝑣𝑔 = (𝑠𝑂𝑐ℎ𝑖𝑎𝑖 + 𝑠𝐽𝑎𝑐𝑐𝑎𝑟𝑑 + 𝑠𝑇𝑎𝑟𝑎𝑛𝑡𝑢𝑙𝑎) / 3

● Suspicious statements are extracted from the metamorphic slices

o 𝑆𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑎 𝑓𝑎𝑖𝑙𝑒𝑑 𝑚𝑒𝑡𝑎𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑡𝑒𝑠𝑡

o 𝑆𝑒𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑐𝑜𝑟𝑒𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑜𝑠𝑒
o 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑛𝑑 𝑢𝑠𝑒𝑑

20

Control flow graph

21

Control flow graph

22

Data flow analysis (1)

● Definition-usage of the variables with high suspicious scores are extracted

● Analyze definition-use chain of suspicious variables from the metamorphic

slices to localize the fault (manually at the moment)

23

Call graph

24

Data flow analysis (2)

● Def-use chain analysis of variables with highest suspiciousness revealed the

propagation path and starting point of error

● Camera system: Error was caused by an incorrectly initialized variable

● Upon fixing this and rerunning the metamorphic tests, no failed tests were

found

25

26

Data flow analysis (3)

Benefits

• Alleviates the test oracle problem and can detect code-level

vulnerabilities

• Assists the developers with root cause analysis and program repair

27

Phase Reduction in

scope of search

Reduction of

scope of search

in percentage

Code analysis (eLOC) 233/701 33

Code analysis

(Branch level basic

block)

65/133 48

Data flow analysis

(Variable level)

60/170 35

Questions?

Thank you for your attention!

28

	Slide 1: Metamorphic Testing for Verification and Fault Localization in Industrial Control Systems
	Slide 2: Motivation
	Slide 3: Methodology
	Slide 4: Overview
	Slide 5: Metamorphic testing
	Slide 6: Metamorphic testing
	Slide 7: Metamorphic testing steps
	Slide 8: Fault localization
	Slide 9: Spectrum-based fault localization
	Slide 10: Program slicing
	Slide 11: Case study
	Slide 12: Metamorphic testing steps
	Slide 13: Two phase metamorphic testing
	Slide 14: Test execution
	Slide 15: Metamorphic test results
	Slide 16: Approach – fault localization
	Slide 17: Instrumentation for program spectra
	Slide 18: Test execution
	Slide 19: Suspiciousness scores
	Slide 20: Suspiciousness elements extraction
	Slide 21: Control flow graph
	Slide 22: Control flow graph
	Slide 23: Data flow analysis (1)
	Slide 24: Call graph
	Slide 25: Data flow analysis (2)
	Slide 26
	Slide 27: Benefits
	Slide 28: Questions?

